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Dealing with 

Common Data 
Problems

The ability to quickly assess the shortcomings of data and correct them can be the 
difference between being able to accomplish what you need to on time or falling behind. 
In this chapter, we're going to give you the tools to identify some of these problems, which 
you'll find are present in much of the data found in the industry.

We'll first look at when there can be too much data. This can be an issue where features 
can have an extremely high correlation with one another and in turn complicate a model. 
You'll see how to find this information and then remove the offending entries.

After that, we'll check into ways to get rid of blank, empty, or Not a Number (NaN) data 
that muddy the waters. This problem causes empty spaces without adding value.

We'll also look at what to do when you have categorical values. There are times when 
you'll need to maintain the relationship between categories, and times when you'll want 
to obfuscate them so that your model doesn't deduce any unnecessary relationship. We'll 
explore and examine both.
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Moving on to feature limit caps, we'll cover what they are and how they can happen, but 
also how they can create bubbles in data that need to be sorted out before you can work 
effectively with it.

Finally, we'll look at the basics of data time manipulation, which you can use to slice and 
pull apart segments to just grab the parts that you need, such as pulling a month from a 
timestamp.

In this chapter, we will cover the following topics:

• Dealing with too much data

• Finding and correcting incorrect data entries

• Working with categorical values with one-hot encoding

• Feature scaling

• Working with date formats 

Let's get started!

Technical requirements
There are a few things that you will need to get the most out of this chapter. They are as 
follows:

• Anaconda Distribution. This includes conda and Navigator.You can download 
that from the following URL: https://www.anaconda.com/products/
distribution

• A conda environment with scikit-learn, pandas, and matplotlib.

• A Jupyter notebook to perform all the coding segments. You also can use any IDE  
of choice or even the command line, but the assumption is that you will be working 
in a notebook.

After you have that set up, we can look at our first topic – how to deal with having  
extra data.
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Dealing with too much data
It's true that more data is usually better, but this isn't always the case. There are many 
times when having extra data has a negative impact on an outcome. Such a case was 
covered in Chapter 1, Understanding the AI/ML Landscape, where a father gave his child 
an extra example of what a tiger was, but that extra example was actually of a panther. 
That additional bit of information would then turn into a negative addition to the training 
set and create a worse learning outcome for your model.

How are you supposed to know this? Understand the data. This will be a common theme 
in this chapter, the book, and in the real world. If you don't start there, then everything 
else is more challenging. It's similar to being able to understand bias, as discussed in 
Chapter 6, Overcoming Bias in AI/ML.

Sometimes though, you won't or can't have a full grasp of the data, but you can use tools 
to help you out. The first clue that you can use is whether certain features of a training 
dataset have high correlations with one another.

Checking feature correlation
Feature correlation is a great indicator to check whether there are potential overlaps 
in data. pandas gives you an easy way to do this, using the corr() function. Let's go 
through an example now, using a dataset that shows the recruiting rank for respective 
colleges in the sport of American college football. 

The dataset will consist of the following features, which are represented in the columns in 
the dataset.

• Rank: The descending order of the team based on the recruiting points, as 
determined by 247Sports.com

• Ave: The average rank for each recruit based on a 100-point scale

• Points: The total points for all recruits for that school

• Wins: The total wins for the school in 2021

In your Jupyter notebook, first, make sure that pandas is installed and read in the NCAA 
data. NCAA stands for the National College Athletic Association:

import pandas as pd 

df_ncaa = pd.read_csv('ncaa_data.csv')
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Then, use the corr() function, which will check the correlation between all the columns 
in the given dataset. The output will be a table that shows a score from –1.0 to 1.0 for each 
column, showing how it correlates to each other column: 

df_ncaa.corr()

This code will output the correlation table, where you can easily see the relationships 
between the potential features:

Figure 8.1 – The NCAA correlation matrix

In this table, you can see that 1 shows up in all spots where a column relates to itself. This 
is to be expected, as the following breakdown shows: 

• 1: Perfectly positive correlation. An example might be the cost of fuel per week 
for your car and the liters/gallons of fuel used (assuming the cost per liter/gallon 
doesn't change).

• 0: No correlation. There isn't a relationship at all. You might see this in the 
temperature in France versus how many books are bought in Texas on any  
given day.

• -1: Perfectly negative correlation. This could happen when you look at the speed  
of a car and the distance to the destination.

This is what is known as the Pearson correlation coefficient, and it's very rare, if ever, to 
see the previous exact numbers in the real world. If you do, then you will want to recheck 
that you aren't accidentally referencing and comparing the number to itself or have some 
other error. More than likely, you will have some decimal numbers in between the figures, 
indicating the relative strength of the correlation. 

Taking the absolute value of the Pearson correlation, anything above .3 is generally 
considered to have some correlation, and anything above .8 has a strong relationship. 
Above .95 is incredibly strong.
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Using what we just learned, let's look and see whether any of the columns might be 
redundant for our dataset. Taking a look at the Points row, we can see that there is a 
strong correlation between rank and average, with -0.91 and .96 respectively. It's easy to 
see why this would be the case if you consider the average gathered from the points, and 
the rank is a direct sort for the team with the highest recruiting point total.

Are all these columns needed? Probably not. It would be safe to remove the derived 
variables and just keep the source of truth, which is the raw point total. Let's do that now.

Removing unnecessary columns in pandas
Recall that we can simply remove a column using the drop() command, which can be 
called on a pandas DataFrame. The first parameter is the column names, also known as 
the labels. This will be a list of strings you pass in. The second tells pandas that you want 
to drop columns, which is the y axis in a two-dimensional table, and officially the 1 axis. 
The 0 axis would be for dropping rows.

Here, we drop the Rank and Ave columns:

df_ncaa_slim = df_ncaa.drop(['Rank','Ave'],axis=1)

After this, you can check to confirm that we are left with only the data we want: 

 df_ncaa_slim.head()

The head() method will show us our new trimmed down dataset, as shown in Figure 8.2:

Figure 8.2 – The trimmed down NCAA dataset

You can see here that this allows us to work with just the features/columns that are useful 
to us. 

You don't always want or need to remove things that have a high correlation; let's see a few 
ways that we might not want to drop these columns.
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Taking caution when removing columns
Be cautious of the famous correlation doesn't equal causation saying. This means that 
just because there might be a correlation between two things, there might not be a true 
relationship between them. 

In our earlier examples, we uncovered that there was a direct connection between our two 
features, but that might not always be the case. Take the following, which is my favorite 
correlation doesn't equal causation example – higher ice cream sales correlate to more 
shark attacks. 

Should stores stop selling ice cream to prevent attacks? Probably not. In this scenario, the 
likely cause could be the related factor of summertime, leading to more people cooling off 
with ice cream and hitting the beaches. 

There are also cases where it's still useful to keep data separate even though there is 
a correlation. Take the example of the number of rooms in a house and the number 
of bedrooms. The number of bedrooms is a subset of the total rooms and also has a 
correlation. In this setting, it may prove valuable to keep both. Many times, the number of 
bedrooms will hit a limit, even as new rooms such as a theater, study, or game room add to 
the total number of rooms available.

You also need to be aware that some algorithms are able to deal with so-called 
multicollinearity, and you don't need to try and perform your own analysis. Approaches 
such as the random forest and lasso regression aren't impacted much by this analysis. It 
can be valuable to look at this analysis to understand the data and perhaps adjust it, but 
be careful with overcorrecting by thinking you need to remove potentially valuable data if 
there is any relationship shown.

Sometimes, there is the opposite of too much data, and that's when you see blanks or 
missing items. Let's see what our options are in that scenario.

Working with missing values
Blank values are a part of many datasets, and there are many different ways this can come 
about. Maybe a value got deleted from the database, there was an issue with recording  
a value, or it could even be a legitimate situation where the value isn't applicable. 

NaN stands for Not a Number. It is a special designation that pandas uses to tell us when 
a value is missing or unavailable. This is inherited from NumPy, and you might see them 
shown as NaN, NAN, or nan – all are equivalent. We'll use NaN in this book.
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pandas' NA Value
pandas since version 1.0 has an experimental value of NA for missing values. 
The reason for this is to ensure a native and uniform missing value across 
all data types, but at the time of writing (version 1.4.2), this is still subject to 
change without warning, and as such, it won't be talked much about in this 
chapter.

We'll cover two scenarios where NaN isn't desired and another where it's a valid situation, 
where there shouldn't be data. First, we need to find these values.

Detecting NaN values
There is a quick way to detect whether the data we are working with has NaN values by 
using the isnull() method to get all the elements that are null and summing up the 
results with sum(). The following code will do just that:

df_ncaa.isnull().sum()

The first part, df_ncaa.isnull(), takes the df_ncaa DataFrame and returns a new 
Boolean array, with each field holding True or False respective of the corresponding 
element that is missing. That new Boolean array is then fed into sum(), which adds up 
the values for each column, with False equaling 0, and True equaling 1. In this case,  
it doesn't make much sense to separate it into different commands, which is why it's left  
as one.

This will output the number of NaN values that are present across each of the columns in 
our dataset, as shown in the following figure:

Figure 8.3 – The total NaNs in the NCAA dataset

We can now see there are many under the Last Championship column and only 2 in the 
other columns. We can dive into those and see which rows have these NaNs. 
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Dealing with valid NaN values
It might seem counter-intuitive to think of some NaNs being valid, but as always, think of 
the context of the dataset you are working in. Is it guaranteed that every college will have 
won a championship? Not at all. In that scenario, having a blank entry is valid. We don't 
want to do anything about those.

Dealing with invalid NaN values
The other situation is when there are values that need to be removed. We can check which 
values have NaNs by first ignoring the Last Championship column, as we know it has 
many NaNs that are valid:

df = df_ncaa.iloc[:,0:-1]

We then use a masking technique to find just the rows where there are NaNs:

df[df.isna().any(axis=1)]

You'll see that there are two entries that consist of nothing but NaNs, which we can deduce 
are clearly there in error, as shown in the following output:

Figure 8.4 – The NaN rows in our data

We can then use the built-in methods to drop values that are NaNs, but if we do that, 
it will grab elements that have NaNs in our Last Championship column, which we 
know are valid. We don't want to discard that data just because the school hasn't won a 
championship.

We can get around this by setting the how='all' parameter to say that the criterion for 
dropping a row is when all the values are NaN. In that case, we can assume there was an 
error in the data entry. Per our previous discovery, rows 28 and 46 fit this criterion:

ncaa_clean = df_ncaa.dropna(how='all')

Checking again for NaN values, you can see that we've removed all NaN items from 
everything but the Last Championship column:
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Figure 8.5 – The updated NaN values in the NCAA dataset

We've now cleaned up the NaN values, which gives us more confidence that we have the 
data needed in place to create models.

Finding and correcting data entries
In the age of computers, human error will always come into play. Unfortunately, those 
mistaken keystrokes will manifest themselves in the datasets that we are tasked to work 
with. This will be present in everything from medical information to a car's service record. 

You can check for anomalies in a few ways; one is to simply group items together and see 
which stand out among the other items in that group. Looking back at our college football 
dataset, we want to confirm that the school's conferences are all correct.

We can simply call on the Conference column, which will be in a pandas series object. 
This object has many methods you can access, but the one we are interested in is pandas' 
Series.value_counts() method.

Let's use that to check whether there are lone conferences:

df_ncaa_error.Conference.value_counts()

This will show the following:

Figure 8.6 – A count by conference 
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We can see that there are a few with just one record. From our knowledge about 
conferences, we know that Sun Belt and MWest (Mountain West) are valid, but SEV stands 
out as an issue. Calling on that specific conference will let us see which team that holds.

Retrieving specific pandas items by condition
pandas has a particularly useful ability to let us grab specific items based on simple to 
complex conditions in the DataFrame. In our current example, we need to check which 
element has SEV as the conference. This is as simple as using a Boolean mask, as discussed 
in Chapter 4, Working with Jupyter Notebooks and NumPy. First, create a mask using a 
conditional that will satisfy what we are looking for:

mask = df_ncaa_error['Conference'] == 'SEV'

Then, apply that mask to the full DataFrame to give us the answer we need:

df_ncaa_error[mask]

This mask will then hide all the things we don't want to see while revealing the areas we 
are concerned about: 

Figure 8.7 – Using a mask to show bad data

We know (or some quick research will tell us) that A&M is part of SEC, so we can be 
confident that the value SEV is a typo. We can easily make this correction using the  
loc method, which can not only locate an item via an index but also grab a specific 
column as well. 

We already have our mask ready, so we can make use of it again here. We also want to 
specify that we want just the Conference column and that we'll set this to the corrected 
SEC conference. We'll print out the results using this same loc method. This will allow us 
to verify that it has been corrected:

df_ncaa_error.loc[mask, 'Conference'] = 'SEC'

df_ncaa_error.loc[7]
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The results are as follows: 

Figure 8.8 – Using a mask to verify the updated data

It is now clear that we've successfully corrected the issue and can continue using our 
cleaned dataset with the correct conferences set up.

The conference itself is a categorical value, and AI models don't work well unless 
everything is a number. There are a few things to consider when making that conversion.

Working with categorical values with one-hot 
encoding
Machine learning and statistics can be quite good at determining relationships between 
numbers. But what if you have a feature that is categorical and doesn't have a relationship? 
The definition of a categorical feature is when the variable is a label or category with 
discrete possibilities, such as colors , the animal kingdom, or cities. 

One option when you have this type of data is to use use one-hot encoding. This is the 
process of converting a categorical value into a set of ones and zeroes so that the model 
can interpret them as independent, but not infer that there is a relationship between them. 
This also prevents the inference that some categories are superior or inferior. 

You can see an example of what this looks like in the following figure. Say you are looking 
at sales data for bouncy balls and one of the features is the color. There are three colors – 
red, blue and green. This is represented as data in the following table: 

Figure 8.9 – The ball color categories



200     Dealing with Common Data Problems

Since these categories can't be directly interpreted because they are simply text, you can 
use one-hot encoding to represent this data in a way that can be used to train a model.  
If you expand each color into its own column, you can use a binary indicator of ones  
and zeroes to represent each discrete category. Our ball example would look like the 
following table:

Figure 8.10 – A one-hot encoding example

Here, you can see that the color of the ball can be determined simply by looking at which 
column has 1. For Ball 1, the Red column is hot (represented as a 1), and the rest have 
a dummy variable, which just means we've put zeroes in those spots. So, only one of 
the columns will ever be hot, hence the name of the encoding type. This terminology of 
dummy variables will be explored as we talk about how to make use of one-hot encoding a 
dataset in pandas.

One-hot encoding with pandas
Let's get the one-hot encoded results from our ball color example using pandas. We will 
first recreate our simple DataFrame per Figure 8.9 with one added ball to see the results 
more easily:

import pandas as pd

df = pd.DataFrame({

    'name': ['ball_1', 'ball_2','ball_3', 'ball_4'],

    'color': ['red', 'blue', 'green', 'blue']

    })

df
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You will see the DataFrame, which will be very similar to the previous table:

Figure 8.11 – A one-hot encoding example setup

Next, we will use the pandas get_dummies function to one-hot-encode our results. 
As we know, one-hot encoding generates mostly dummy values (zeros) in the expanded 
DataFrame, and this is where the name comes from. The column parameter specifies 
what we should encode, and the prefix is simply a string that will be prepended to make it 
easier to read: 

one_hot_df = pd.get_dummies(df, prefix=['color'], columns = 
['color'])

one_hot_df

The result of this will be our one-hot encoded result. Note that ball_4 has the same fields 
for its color fields as ball_2, since they are both blue:

Figure 8.12 – A one-hot encoding results

This result is what we expected, but there are some things to think about when deciding to 
use one-hot encoding .

When to not use one-hot encoding
One-hot encoding isn't always the approach you want, and there are a few things you will 
want to consider. 
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You want to be cautious when there are exceptionally large numbers of categories or 
unique elements. Think back to our ball example with just three colors. What if instead 
of 3 possibilities we had 10,000? Then, what if we started with two color features, 
representing the primary and secondary colors? You would massively explode the dataset 
from a few columns to 20,000! This would significantly slow down the processing time it 
takes to train or analyze the model.

There is also another type of encoding you might want to consider when relationships 
come into play, which is ordinal encoding. We'll touch on this next.

Ordinal encoding
For things that do, in fact, have a relationship, it might be better to not one-hot-encode. 
Variables that have an inherent ordering between them are referred to as ordinal 
variables. Examples include grades on a test or satisfaction ratings on a survey. These, in 
fact, do have subjective better and worse aspects to them, as a D grade is worse than an A, 
and very dissatisfied is worse than very satisfied.

If you have ordinal variables, it would be better to leave them in a format that leaves this 
relationship intact, even though they are a categorical rating. If the magnitude is relevant 
to the problem trying to be solved, then they might not bea viable candidate for one-hot 
encoding.

For example, the following shows the results of a college survey. All that was captured was 
the majors of the students and their satisfaction with the college. The rating scale was from 
1 to 5:

Figure 8.13 – Simple survey results
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In this scenario, you could one-hot-encode the major, but you wouldn't want to use that 
approach on the answer. There is an objective ordering on the answers from 1 to 5, where 
5 is better than 4, for example. We wouldn't want to lose that context by one-hot encoding.

Feature scaling
When you are working with a large spread of numbers, the higher the deviation, the 
harder it will be to train a good model on them. This issue with deviation is for a number 
of reasons we won't cover now, but we'll cover scaling techniques more in depth in the 
Scaling the data section in Chapter 9, Building a Regression Model with scikit-learn. But 
you should know that sometimes you will come across datasets where someone has 
already scaled the data. 

You can't always know where a dataset has come from, so you may not have the benefit of 
understanding why a particular decision was made.

This data could come from a colleague, a Kaggle competition, or it is just an example 
dataset included in scikit-learn, like the one we are using now. This is the same 
California training dataset that was used in Chapter 2, Analyzing Open Source Software, 
and we'll assume that you already have the y_test and y_predict setup. If not, refer 
back to Chapter 2, Analyzing Open Source Software.

Let's plot the training dataset to see where we are starting from. All of the following are 
the same as the previous examples, with the addition of the alpha parameter, which 
allows a floating-point number to indicate how transparent or opaque we want something 
to be in the graph. This will allow us to see density much more clearly. Usually, .2 is a 
good value to start at:

import matplotlib.pyplot as plt

plt.title('Actual vs Predicted California Housing price') 

plt.xlabel('Actual price') 

plt.ylabel('Predicted price') 

plt.scatter(y_test,y_predict,alpha=.2)

plt.plot([0, 5], [0, 5],"r-") 

plt.show()
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The preceding code block will output the following plot, showing the predicted versus the 
actual home value, with the darker spots showing greater density:

Figure 8.14 – A data anomaly from plotting the California dataset

This plot of the data shows a strange anomaly on the right, as you can see. Do you think 
the actual price of all those houses was exactly the same? Probably not. One issue is that 
the actual price is capped at 5.0, and yet the model might (correctly) predict that these 
units are above the scaled 5.0. 

Another issue is the scale itself. You would be hard-pressed to find a house anywhere that 
is around five dollars. Let's unpack what could be going on by starting with another way to 
visualize the data.

Creating a histogram with pandas
By using pandas' built-in histogram features, we can see whether there are some extreme 
values that might be an issue.

First, let's build a histogram of the values to see whether they follow a normal distribution. 
A histogram is a way to display data in which values are put into buckets of an equal 
range, and you then count how many items are in each bucket. This is also known 
as binning. We'll use a high number of bins, considering we have a broad range of 
possibilities for the price of the house. The more bins, the smaller the range that is  
in each bin.

We'll use the target of the California dataset and then call the hist() function, with the 
bin number set to 100:

target_value.hist(bins = 100)
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Using this, we see what we expected. There are many houses that have their price listed in 
the same bucket, as you can see on the far right of the following figure:

Figure 8.15 – The California home price histogram's original data

Feel free to play around with the bins number to see the resultant graph. Let's show a 
quick extreme example with only 5 bins:

target_value.hist(bins = 5)

The following is the resultant graph, which is the same as Figure 8.15 but with much larger 
bin sizes, due to there only being five bins to put things into:

Figure 8.16 – The California home price histogram with a small bin number
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It seems obvious that if we started with this small number of bins, we would have lost the 
valuable insight that there is an anomaly at the high end of the data.

Regarding the anomaly seen on the histogram with 100 bins in Figure 8.15, this is one of 
the downsides of capping data at a set limit. You are sacrificing some of the clarity of the 
pricing for the exact target you need to train on! Some of those houses could be two or 
three times that upper limit, but there is no way to know that.

There are many reasons that this can happen. Maybe there was a poll that had multiple 
choices, or maybe the researchers that gathered the data thought it would be better to bin 
the data so that it would be easier to work with. Whatever the case, we are losing pure 
information and need to see whether we can correct that.

Before we do much else, we need some objective way to measure whether what we are 
going to do actually improves the model. There are a few ways to do that for a regression 
problem.

Using the R2 score to evaluate a model
One way to put a number on how good this model is when trained with default data is to 
use the R2 score. The R2 score is an indicator of how well our model does compared to if 
we simply took the mean of the target values and assumed that every house would sell for 
that: 

• R2 = 0.0: The model performs exactly the same as simply taking the mean for every 
dependent variable value – in this case, the house price.

• R2 = 1.0: The model fits the data perfectly. This might not be desirable, as it could 
mean the model overfits the training data and might not perform well on data it 
hasn't seen before.

• R2 < 0.0: The model performs worse than if you just took the mean for everything. 
This is an indicator that the model needs a lot of work, the data does, or both.

Let's do a quick calculation on the R2 score here. We'll cover in more detail the r2 score 
and other ways to evaluate a model's accuracy in Chapter 9, Building a Regression Model 
with scikit-learn.

We'll cover the same steps of creating a model as we did in previous chapters, so we'll skip 
the steps of importing the California test dataset and the train/test split. See Chapter 
2, Analyzing Open Source Software, for a refresher on model creation.



Feature scaling     207

Here, we'll focus on model training and getting the R2 score: 

1. First, create a model, as we did previously: 

from sklearn.linear_model import LinearRegression

linear_regressor = LinearRegression() 

y_predict = linear_regressor.fit(X_train,y_train).
predict(X_test)

2. Then, use sklearn, which lets us easily get the r2 score by using the predicted 
values and comparing them to the test values that we held out of the full dataset:

from sklearn.metrics import r2_score

r2_score(y_test, y_predict)

This will give us the result of 0.626, which is okay, but let's see whether we can improve 
on that later in the chapter. 

Using the MSE score to evaluate a model
Along with the r2 score, another common way to measure a regression model is with the 
Mean squared error. The Mean Squared Error (MSE) is simply the equation in which  
you take the mean of how far away the actual value is from the predicted value squared. 
The raw distance from the actual point to the predicted point is the error, hence the  
name MSE.

The following figure shows the equation for it:

Figure 8.17 – The MSE equation

Here are the components of the previous equation:

• Yi = the actual value

• Ŷi = the predicted value

• n = the total number of data points
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The MSE will give you a score where lower is better, which breaks down roughly  
as follows:

• MSE = 0: There is a perfect prediction across all the data points. Similar to getting  
a perfect R2 score, this can be very suspicious, as it might indicate that the data fits a 
little too well.

• MSE = > 0: Your predicated target isn't perfect and grows increasingly poor the 
higher this gets. One flaw in this measurement is that while you can compare two 
models to each other across the exact same dataset, there isn't a range of pretty good 
to horrible. In one problem or scenario, a MSE of 20 might be incredible, but in 
another, that same value could be wildly off from what the true values are. It all 
depends on the range of the target value.

The MSE is also simple to calculate using sklearn, and assuming you are using the same 
y_test and y_predict variables as you did earlier with R2, you can simply use the 
mean_squared_error method to calculate it, as we can see in the following:

from sklearn.metrics import mean_squared_error

mean_squared_error(y_test, y_predict)

This will give you the expected MSE, which in our case is the following:

0.61222

These R2 and MSE values are fine, but there is also one more way to evaluate our results 
that we'll talk about, which is the MAE.

Using the MAE score to evaluate a model
The Mean Absolute Error (MAE) is very similar to the MSE, except that for each data 
point, you take the absolute value of the error instead of squaring it. This has the benefit of 
preventing massive numbers from forming if you are dealing with larger numbers, as well 
as preventing a skewed smaller number in the case of squaring a number less than one.

The equation is as follows:

Figure 8.18 – The MAE equation
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Here are the components of the previous equation:

• yi = the actual value

• xi = the predicted value

• n = the total number of data points:

We can use the following code to calculate the MAE again using our same values  
as before:

from sklearn.metrics import mean_absolute_error

print(f"MAE is: {mean_absolute_error(y_test, y_predict)}")

This gives us a score of 0.5117 but we think we can improve the data points if we focus  
on removing the capped values we have on the median income. But what should we do 
about that?

Overcoming the limits of capped values
One solution is to simply remove all data that hits the upper limit. This might be the safest 
way to ensure that we don't include any data that is capped at this ceiling but might, in 
fact, go much higher. 

Dropping pandas rows based on a condition
In our example, y_train is the training data representing the housing price. We need to 
clear out data that is above our threshold of five, as that is what we know hits that ceiling.

Set this criterion as the condition to check for, and then use that condition to create a 
Boolean representation of whether each element satisfies this criterion or not. Use the 
following code to do that:

target_cond = target_value < 5.0

target_cond

You'll see that this gives you your Boolean mask as follows:

0        True

1        True

2        True

         ... 

20637    True
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20638    True

20639    True

Since we know that the training features have the same number of rows due to this data 
matching up with the target value, we can now apply this mask to our training features:

filtered_training_data = training_data[target_cond]

This will give you a dataset of 19,648 rows × 6 columns to train with. 

Let's also check the histogram for the new target values to make sure we have removed 
that top ceiling. We'll call the same histogram method as we did previously, just with the 
new subgroup of the target:

target_value[target_cond].hist(bins = 100)

As you can see, we have removed that large column at the end. This is what we want and 
expect:

Figure 8.19 – The California home price histogram filtered

Now, let's train a model in the same way with this new data and check the R2 and MSE 
scores again:

X_train, X_test, y_train, y_test = train_test_split(filtered_
training_data, target_value[target_cond], test_size = 0.2, 
random_state=1) 

linear_regressor = LinearRegression() 

y_predict = linear_regressor.fit(X_train,y_train).predict(X_
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test)

print(f"Filtered Prediction")

print(f"R2 is: {r2_score(y_test, y_predict)}")

print(f"MSE is: {mean_squared_error(y_test, y_predict)}")

We'll see that this gives us both scores for this new dataset:

Filtered Prediction

R2 is: 0.5159223449106703

MSE is: 0.4582190705946869

Let's compare the new values to the old ones, using the values we already know:

Figure 8.20 – Comparing the R2 and MSE scores

You might notice something odd. The original dataset that we believed was not particularly 
good has a slightly better R2 score, but the filtered one has a much better MSE score!

There are three conclusions that we should take away from this:

• Cleaning data doesn't always guarantee a better model. There are a huge number of 
factors that go into whether a model will be able to accurately predict something, 
and changing one aspect might have unforeseen impacts.

• Looking at multiple scoring metrics is a good idea. There is no single clear way to 
know whether a model is good or not, and if you just looked at the r2 score, you 
might not even try to improve upon things. Conversely, if you just used the MSE as 
a measurement, then you might lose the insight that removing this extra data might 
not be the home run you thought it was.

• Sometimes, you'll make mistakes. The insight you think you have about data might 
turn out to be wrong. Maybe, in this case, the houses showed accurate data, and 
people were just very hesitant to list their house at the $500,000 mark, similar 
to how people are more likely to buy products priced at $19.99 than $20.00 for 
psychological reasons.

In the end, the MSE for the filtered data is roughly a 25% improvement, which is a 
significant mark. We should stick with this one. The higher r2 score might be due to 
the relatively few houses at the capped rate compared to the total, but those high sales 
numbers brought the average up.
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However, what if we wanted to figure out how we got this price cap in the first place? You 
might want to try to get the original dataset or gather more information on the process 
used to construct it.

Recovering the raw dataset
It might be a possibility to simply get back to the original dataset yourself and start from 
there. If you got this from a colleague, online, or some other source, it may be quite simple 
to track it down. 

If the dataset was created by someone you know, you also might be able to talk to them to 
see whether it was the gathering methods or data manipulation afterward that arrived at 
this capped amount. 

There might also be documentation in the repository that tells you what scaling was 
used and how to reverse it. It is possible that there was something more advanced that 
compressed the higher numbers, and thus you might have lost the ability to reverse the 
scaling.

Working with date formats
Dates and times are often found in datasets and can present a few unique problems with 
data, becoming a huge thorn in a data scientist's side. There are many formats across 
the world, which differ across countries and systems. For example, the United States 
commonly uses the month/day/year format (mm/dd/yyyy), but in Europe, you are more 
likely to see day/month/year (dd/mm/yyyy). 

Python has a built-in datetime object, but we'll make use of pandas' built-in datetime 
type as well. This will allow us to easily perform a few different operations on them, 
including grabbing just the month value, specifying a specific format, and other 
operations.

Time zones also come into play. There are many different rules across the world on what 
happens when. This is one reason UTC has become more common. UTC is a set standard 
that can be used no matter what your specific time zone is. 

Specifying a date field in pandas
The easiest way to call out a date is to specify it when reading data. Assuming you are 
using the read_csv() method, you can use the parse_dates parameter to tell pandas 
which column contains the data. We'll use our college dataset with the date that the 
college last won a championship. 
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Read in the CSV file and then check info() to verify that the second column is now 
correctly pulled in as a datetime object:

df_date_format = pd.read_csv('date_format.csv', parse_
dates=[1])

df_date_format.info()

You'll see that the second column is listed as a datetime object, as expected. Note that 
64 just shows that this object is 64 bits; it's part of the internal workings of how pandas is 
set up, and you don't need to worry about it:

Data columns (total 2 columns): 

#   Column  Non-Null Count  Dtype         -

--  ------  --------------  -----          

0   Price   12 non-null     int64          

1   Date    12 non-null     datetime64[ns]

dtypes: datetime64[ns](1), int64(1)

Now, say we just want the year, as the month and day aren't significant to understanding 
the data or answering the question we want. We can do this by creating a new column 
with just the year from this data object. 

You can call on dt to access the datetime methods and from them, call on the year: 

df_date_format['year'] = df_date_format['Date'].dt.year

df_date_format.head()

This will show you the following:

Figure 8.21 – Pulling out the year from pandas' datetime object

As you can now see, the year is in a clean column all by itself at the end.
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Converting string to dates with the to_datetime method
You won't always have the benefit of getting the dates in a clean data format, but there is a 
quick and easy way to convert them with pandas. The to_datetime() method will take 
in a single item, array-like, or a DataFrame object and convert it to a datetime object. 

A quick example shows you how easy it is to use. Let's start with a list of dates such as the 
following:

dates = pd.Series(['09/10/1956', '7/05/1957', '9/08/1981', 
'06/10/1983', '07/13/1987', '9/14/1990', '5/02/1992', 
'10/08/1994'])

We then simply pass in this list along with the infer_datetime_format=True 
argument to signal that we want to infer what the format is from the input data, using the 
following code:

dates_df = pd.to_datetime(dates, infer_datetime_format=True)

We will now be delivered a DataFrame with the same elements that were passed in but 
consisting of the datetime type, which we can manipulate and change as we see fit.

There are many other operations we can perform after we have a datetime object. For 
a more complete list, see the official documentation here: https://pandas.pydata.
org/docs/reference/api/pandas.to_datetime.html.

Summary
Every situation and dataset you see will be unique; however, the problems you encounter 
with them won't be. In this chapter, you saw issues that will come up repeatedly with the 
datasets you'll be working with.

We saw how having too much data can be a problem by having highly correlated 
features, and how you can find that correlation and remove it. We used the example of 
college recruiting points and rank, but you can easily find others in the real world, such 
as housing prices – you might have the price per square footage but also have those as 
separate features.

Working with categorical data is common, but at the end of the day, machine learning 
models need numbers to be able to work. We saw that there are times when we want to 
keep relationships between categorical values, such as a rating system, and other times 
when we don't. We saw how we can use one-hot encoding to encode these categories 
when we don't want to keep the relationships.
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Working with missing or blank values was another issue, and we looked at how we can 
isolate those items that show up as NaNs. We saw that some were not an issue, and there 
were those that can cause problems. For those that can be an issue, we checked out how 
we can remove elements that consist of nothing but NaN values so that we can avoid 
similar issues in the future. 

Next, we looked at how we could isolate fields with incorrect data by finding entries in 
categorical columns that stood out on their own. This can give us an indicator when 
an entry wasn't intended; when the number of entries is high enough, there's a low 
probability that there would be a single entity in a category. 

We also saw how we can detect capped values by looking at histograms and how pandas 
lets you conditionally remove elements. We saw how this can change the r2 and MSE 
scores used to evaluate models and how to use exercise caution when giving either one of 
those too much weight. 

Finally, we took a quick peek at working with datetime objects and how you can extract 
specific components of datetime, such as the month or the year.

Hopefully, with these tools, you will be able to decide when data needs to be cleaned 
up leading to errors being corrected more quickly. You now can increase your speed at 
correcting said issues, which gets you to your end goal of solving problems and creating 
models quicker.

In our next chapter, we are going to put together many of the things we have learned up to 
this point in this book to create a larger regression model using scikit-learn, along 
with being able to visualize the results. 


