
2022
OPEN SOURCE SECURITY
AND RISK ANALYSIS REPORT

22022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

TABLE OF CONTENTS

Introduction .. 3
ABOUT THE 2022 OPEN SOURCE SECURITY
AND RISK ANALYSIS REPORT AND THE CYRC .. 4

Overview ... 5
2022 in review ..6

Terminology ... 7

Industries in the OSSRA ...8

Vulnerabilities and Security .. 9
Open source vulnerabilities and security10

2021: The Year of Open Source ... 11

Vulnerabilities in Industries ... 12

The Executive Order and Supply Chain Security 13

The top 10 vulnerabilities ...14

Licensing ...15
Open source licensing ..16

Understanding license risk ... 17

Open Source Maintenance .. 18
Maintenance by Open Source Developers .. 19

Is Your Organization Supporting Open Source? 19

Maintenance by Open Source Consumers 20

Conclusion ...21
A Prescription for the “Witches’ Brew” of Open Source22

Are We Vulnerable? Are Our Customers
Vulnerable? Will We Be Held Accountable?22

Open Source: A Charm of Powerful Trouble22

A Software Bill of Materials ..22

32022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

INTRODUCTION

42022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

ABOUT THE 2022 OPEN SOURCE
SECURITY AND RISK ANALYSIS
REPORT AND THE CYRC
Welcome to the 2022 Open Source Security and Risk
Analysis (OSSRA) report. The 7th edition of OSSRA delivers
our annual in-depth look at the current state of open
source security, compliance, licensing, and code quality
risks in commercial software. Synopsys shares these
findings to help security, legal, risk, and development
teams better understand the security and license risk
landscape. The data in this report is possible thanks to
the Synopsys Cybersecurity Research Center (CyRC),
whose mission is the publication of security advisories
and research that help organizations better develop and
consume secure, high-quality software.

This year, CyRC researchers examined anonymized
findings from over 2,400 commercial codebases across
17 industries. The growth in the number of audited
codebases—64% larger than last year’s—reflects the
significant increase in merger and acquisition (M&A)
transactions throughout 2021. According to Morgan
Stanley, 2021 saw a record number of M&A deals, with a
total value of more than $4.9 trillion.1 The growth in audits
can also be attributed to a recognition that software is
often a key element of a company’s intellectual property
(IP). Consequently, acquirers in M&A deals want to
understand what risk may be associated with the software
they’re acquiring—specifically risk around licensing,
security, and the quality of the open source used in that
software.

For nearly 20 years, development, security, and legal
teams around the world have placed their trust in Black
Duck® software composition analysis (SCA) solutions
and audit services. Our SCA offerings help organizations
effectively identify and track open source code and
automate open source policy enforcement across
development environments.

Each year, our Audit Services team audits thousands of
codebases for our customers, mainly to identify a range
of software risks in M&A transactions. Black Duck audits

provide a comprehensive and up-to-date software Bill
of Materials (SBOM) covering the open source, third-
party code, web services, and APIs in an application. The
Audit Services team relies on data from the Black Duck
KnowledgeBase™ to identify potential license compliance
and security risks. The KnowledgeBase contains
information for nearly 200 million versions of over 5.1
million open source components that use data from more
than 26,000 unique sources. This data is curated and
validated by the CyRC.

This analysis of 2021 audit data was conducted by the
CyRC’s Belfast team. In addition to their role in collecting
and analyzing the data used for this report, the team
issues Synopsys Black Duck Security Advisories. These
detailed notifications deliver enhanced vulnerability
information directly to commercial Black Duck customers.

Whatever industry you’re in, OSSRA data indicates that
it’s prudent to assume open source will be part of the
software your business builds and uses. As our findings
underscore, open source is everywhere, as is the need to
properly manage its use. Open source is the foundation
for every application we rely on today. Identifying, tracking,
and managing open source is critical for effective software
security. This report offers key recommendations to help
developers and consumers better understand the open
source ecosystem and manage open source responsibly.

Open Source is
Everywhere,

As Is The Need
To Properly

Manage ITS USE

https://www.synopsys.com/software-integrity/cybersecurity-research-center.html

52022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

OVERVIEW

62022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

OVERVIEW

2,409
codebases

audited in 2021

87%
97%

included

security & risk

assessments

contained

open source

contained at least
one vulnerability

of code in codebases
was open source

contained components
that had no new
development in two years

contained open source
that was more than
four years out-of-date

contained open source with
no license or custom license

utilized components that
were not the latest version

of Audited codebases
had license conflicts

2018 2019 2020 2021

60
%

80
%

2022 in review

72022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

OVERVIEW

Terminology
Codebase
The code and associated libraries that make up an
application or service.

Black Duck Security Advisory (BDSA)
A classification of open source vulnerabilities identified
by the CyRC security research team. BDSAs provide
Synopsys customers with early and/or supplemental
notification of open source vulnerabilities and upgrade/
patch guidance.

Software component
Prewritten code that developers can add to their
software. A software component might be a utility, such
as a calendar function, or a comprehensive software
framework supporting an entire application.

Dependency
A software component becomes a dependency when
other software uses it—that is, when software becomes
dependent on that component. Any given application or
service may have many dependencies, which themselves
may be dependent on other components.

Executive Order 14028
In May 2021, U.S. President Biden issued an order titled
“Improving the Nation’s Cybersecurity” instructing various
agencies of the federal government to create software
security guidelines for companies doing business with
the federal government. This order includes a timeline
for activities that, as of the writing of this report, do not
mandate contractual obligations. However, despite the
lack of hard requirements, the order has prompted many
organizations to re-examine their security practices and
scrutinize their level of software security risk. The use of
a software Bill of Materials is a key element promoted by
Executive Order 14028, as it facilitates the communication
of software supply chain information between producers
and consumers of software.

Open source license
A set of terms and conditions stating end-user obligations
when an open source component (or a snippet of a
component’s code) is used in software, including how the
component may be used and redistributed. Most open
source licenses fall into one of two categories.

Permissive license
A permissive license allows use with few restrictions.
Generally, the main requirement of this type of license
is to disclaim any liability on the part of the original
developer and provide attribution of the original code
to the original developers.

Copyleft license
This type of license generally includes a reciprocity
obligation stating that derivative works based on
original code provided under a copyleft license are
released under the same terms and conditions as the
original code, and that the source code containing
changes must be available or provided upon request.
Commercial entities are wary of including open
source with copyleft licenses in their software, as its
use can call the rights, ownership and control of the
codebase subject to the copyleft license into question.

Software Bill of Materials (SBOM)
A comprehensive inventory of the open source
dependencies in a codebase, often generated by a software
composition analysis tool. An SBOM lists all the open
source, proprietary code, associated licenses, versions in
use, download locations for components/dependencies,
and subdependencies the dependencies link to. Since
SBOMs are intended to be shared across companies and
communities, having a consistent format (that is both
human- and machine-readable) with consistent content
is critical. National Institute of Standards and Technology
guidelines currently specify three standards as approved
formats: SPDX, CycloneDX, and SWID.

Software composition analysis (SCA)
A type of application security tool used to automate the
process of open source software management. SCA
tools identify the open source used in a codebase, provide
risk management and mitigation recommendations, and
perform license compliance verification.

Apache Log4j2 vulnerabilities
(BDSA-2021-3887, CVE-2021-44228, et al.)

The open source component Apache Log4j2 (commonly
known as Log4j) is broadly used within the Java
community to implement application logging. Several
vulnerabilities have been identified in Log4j, including
remote code execution, denial of service, and LDAP
vulnerabilities.

82022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

OVERVIEW

Percentage
of Scanned
Codebases
Containing
Open Source

Internet of Things

Telecommunications
and Wireless

Virtual Reality, Gaming,
Entertainment, Media

Cybersecurity

Healthcare, Health Tech,
Life Sciences

Retail and eCommerce

Manufacturing,
Industrials, Robotics

Financial Services and
FinTech

Computer Hardware and
Semiconductors

Ed Tech

Marketing Tech

Internet and Mobile
Apps

Big Data, AI, BI,
Machine Learning

Aerospace, Aviation, Auto,
Transportation, Logistics

Energy and Clean Tech

Enterprise Software/
SaaS

Internet and Software
Infrastructure

100%

99%

96%

99%

97%

100%

98%

94%

100%

98%

95%

100%

97%

94%

99%

97%

93%

Industries in the OSSRA

92022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

VULNERABILITIES
AND SECURITY

102022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

All Black Duck audits examine open source license
compliance, but customers can opt out of the
vulnerability/operational risk assessment portion of
the audit at their discretion. In 2021, the Audit Services
team conducted a total of 2,409 audits. Of those audits,
13% (312) opted out of a security and operational risk
assessment. The data in the Open Source Vulnerabilities
and Security and Open Source Maintenance sections of
the 2022 OSSRA report is based on the 2,097 codebases
that included risk assessments, whereas the data in the
Licensing section is based on all 2,409 codebases.

VULNERABILITIES AND SECURITY

Open source vulnerabilities
and security
Of the 2,409 codebases analyzed by Black Duck Audit
Services for this year’s report, 97% contained open source.
Eighty-one percent contained at least one known open
source vulnerability, a minimal decrease of 3% from the
findings of the 2021 OSSRA.

We found a more dramatic decrease in the number of
codebases containing at least one high-risk open source
vulnerability; only 49% of this year’s audited codebases
contained at least one high-risk vulnerability, compared
to 60% last year. High-risk vulnerabilities are those that
have been actively exploited and already have either a
documented proof-of concept exploit or classification as a
remote code execution vulnerability.

Vulnerabilities in Codebases

Percentage of Codebases Containing Vulnerable Components

2016 2017 2018 2019 2020 2021

4
0

%
60

%
80

%

● Percentage of codebases containing at least one vulnerability

● Percentage of codebases containing high-risk vulnerabilities

43%
jQuery

33%
Lodash

23%
Bootstrap (Twitter)

9%
jackson-databind

8%
Spring Framework

5% Netty Project
4% Apache Tomcat
4% OpenSSL
<1% Ruby
<1% PHP

of the codebases
had risk assessments

112022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

2021: The Year of
Open Source
Although the decrease in high-risk vulnerabilities found
in the audits was encouraging, 2021 was still a year filled
with open source issues including supply chain attacks,2
hacker exploits of Docker images,3 and a developer
sabotaging their own open source libraries and breaking
thousands of dependent applications in the process.4
Most notably, 2021 ended with a zero-day vulnerability
in the popular Apache Log4j utility. The primary Log4j
vulnerability, known as Log4Shell (CVE-2021-44228),
allowed attackers to execute arbitrary code on vulnerable
servers. As the story unfolded, the potential severity of this
vulnerability became clear.

What’s most notable about Log4Shell, however, is not its
ubiquity but the realizations it spurred. In the wake of its
discovery, businesses and government agencies were
compelled to re-examine how they use and secure open
source software created and maintained largely by unpaid
volunteers, not commercial vendors. What also came to
light was that many organizations are simply unaware of
the amount of open source used in their software.

Also unveiled by the Log4j incident is the inherent trust
organizations place in open source; most development
teams use it without performing the same security
reviews required for commercial or proprietary software.

Further complicating the situation is the variety of open
source code. For example, GitHub has millions of projects
in which the number of developers is in the single digits.
But in popular open source projects like Kubernetes,
large numbers of volunteer developers work to maintain
the code. Some of those maintainers are employed by
companies that use Kubernetes and therefore have a
vested interest in its maintenance.

VULNERABILITIES AND SECURITY
One of the takeaways from Log4Shell’s discovery should
be the need to create a path to mitigate the business
risk associated with using open source software. The
important distinction here is that open source itself doesn’t
create business risk, but its mismanagement does.

The first step toward squashing business risk should
involve a comprehensive inventory of all software a
business uses, regardless of where it came from or how
it was acquired. Only with this complete inventory, known
as a software Bill of Materials (SBOM), can teams identify
which components are used by which asset. This level of
information, provided by a software composition analysis
tool, enables security teams to chart a path forward, with
plans in place to address risk stemming from new security
disclosures like Log4Shell.

Put simply, it’s awfully hard to fix something you don’t know
about or can’t find.

Percentage of audited
Java codebases that

contained vulnerable
Log4j component

122022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

Vulnerabilities in
Industries
This year, we found that 4 of the 17 industry sectors
represented in this report—Computer Hardware and
Semiconductors, Cybersecurity, Energy and Clean Tech,
and Internet of Things—contained open source in 100%
of their codebases. The remaining verticals had open
source in 93% to 99% of their codebases. Even the sector
with the lowest percentage—Healthcare, Health Tech, Life
Sciences—had 93%, which is still very high. It’s clear that
open source really is everywhere. And this fact did not
go unnoticed by the U.S. government. A January 2022
White House briefing statement described software as
“ubiquitous across every sector of our economy and
foundational to the products and services Americans use
every day. Most major software packages include open
source software... [which] brings unique value but has
unique challenges.”5

A layer deeper, the amount of open source in codebases
was also high. For example, 100% of codebases in the
IoT sector contained open source, and an astounding
92% of the audited code in this sector was open source.
Troublingly, 64% of the IoT codebases also contained
vulnerabilities.

Similarly, the Aerospace, Aviation, Automotive,
Transportation, and Logistics sector had open source
in 97% of its codebases, and 60% of the total code was
composed of open source. The real revelation came when
we looked at open source vulnerabilities: 60% of this
sector’s codebases had open source vulnerabilities.

We found more of the same in the Internet and Mobile
Apps sector; 99% of codebases contained open source,
and 80% of the codebases were composed of open
source. Fifty-six percent of the codebases contained open
source vulnerabilities.

This story was echoed across all industry sectors; open
source was in almost everything we scanned. Open
source components made up the large majority of
codebases, and much of those codebases were vulnerable
to exploit and attack.

VULNERABILITIES AND SECURITY

Percentage of Codebases containing Open Source Vulnerabilities, by Industry

2021

64% Internet of Things

60% Aerospace, Aviation, Automotive, Transportation,
Logistics

56% Internet and Mobile Apps

54% Ed Tech

53% Marketing Tech

53% Energy and Clean Tech

53% Financial Services and FinTech

51% Retail and eCommerce

51% Manufacturing, Industrials, Robotics

50% Enterprise Software/SaaS

46% Virtual Reality, Gaming, Entertainment, Media

45% Healthcare, Health Tech, Life Sciences

43% Computer Hardware and Semiconductors

42% Big Data, AI, BI, Machine Learning

41% Internet and Software Infrastructure

41% Telecommunications and Wireless

38% Cybersecurity

2018

4
0

%
60

%
80

%

2019 2020 2021

132022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

The Executive Order and
Supply Chain Security
In light of the uptick in security breaches this year,
President Biden issued Executive Order 14028, outlining
how companies doing business with the federal
government should secure their software. While Biden’s
aim was to help bolster the United States’ cybersecurity
profile, the order prompted an analysis of security
practices by industries and organizations nationwide.

Looking specifically at open source security in the
context of software supply chains, it’s important to
first acknowledge that open source software, just like
commercial software, is made up of many components,
which themselves may utilize a large number of
subcomponents, or “dependencies.”

VULNERABILITIES AND SECURITY
This is true for most software, whether it’s for mobile
applications, IoT firmware, business logic functions,
or any other use. Each element has dependencies that
are required for the software to function properly. The
dependencies used within any given application represent
the suppliers within this software supply chain. Some of
those suppliers may be commercial entities, like those
supplying custom SDKs, but as we’ve seen with open
source usage, a majority of the dependencies are open
source. These dependencies are where the greatest risk
exposure exists within a software supply chain.

The only way to minimize this risk is with a comprehensive
and exhaustive SBOM that tracks dependencies and
their associated risk, allowing you to take prioritized and
informed action when needed.

142022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

CVE-2020-8022 CVE-2019-10744 CVE-2017-9224 CVE-2017-9225 CVE-2017-9226

BDSA-2015-0753
(CVE-2015-6420)

CVE-2020-7788 BDSA-2018-4597
(CVE-2018-14719)

CVE-2018-1000613 BDSA-2015-0001
(CVE-2015-7501)

BDSA-2014-0063 BDSA-2015-0567 BDSA-2020-3839 BDSA-2020-1674
(CVE-2020-8203)

BDSA-2021-0375
(CVE-2020-28500)

BDSA-2020-0686
(CVE-2020-0187)

BDSA-2020-0964
(CVE-2020-11023)

BDSA-2020-0955
(CVE-2020-11022)

BDSA-2019-1138
(CVE-2019-11358)

BDSA-2017-2930
(CVE-2015-9251)

The top 10 vulnerabilities
Several vulnerabilities discovered in last year’s audits
surfaced again this year, with some concerning increases.
CVE-2020-11023 and CVE-2020-11022 were found in
37% of codebases last year. This year the percentages
for both increased to 43%. Rated as Medium severity by
the National Vulnerability Database (NVD),6 both CVEs are
found in versions of jQuery. Our audits showed that jQuery
was the #1 component containing vulnerabilities. Forty-
three percent of the audited codebases contained the
jQuery component.

When the percentage of a given vulnerability remains
constant or increases year over year, a conclusion could
be drawn that some DevSecOps teams are struggling to
stay on top of open source risk.

On the other hand, we saw promising improvements
this year in the number of high-risk CVEs/BDSAs present
within the audited codebases. The top vulnerability last
year was present in 29% of codebases. This year, the
most prevalent high-risk vulnerability, CVE-2020-7788, was
identified in only 8% of codebases. All reoccurring high-
risk vulnerabilities saw significant decreases.

Prompt identification, prioritization, and mitigation of high-
risk vulnerabilities can help teams address the risks that
pose the greatest threat to their organizations.

VULNERABILITIES AND SECURITY

Percentage of Codebases With Top 10 CVEs/BDSAs

Percentage of Codebases With Top 10 High-Risk CVEs/BDSAs

30%

38%

30%

41%

32%

43%43%43%

34%37%

8% 6% 5% 5% 5%

<1%<1%<1%4%4%

152022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

LICENSING

162022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

LICENSING

Percentage of codebases containing Top 10 licenses with conflicts

Open source licensing
Black Duck Audit Services found that 53% of the 2021
audited codebases contained open source with license
conflicts, a dramatic decrease from the 65% seen in 2020.
Generally speaking, license conflicts decreased across the
board between 2020 and 2021.

From a specific license standpoint, one increase we saw
in 2021 concerned the Creative Commons ShareAlike 3.0
license. In 2021, 17% of audited codebases were found to
have some form of conflict with that license, versus 15%
the year before.

The Creative Commons ShareAlike 3.0 license conflict
numbers illustrate an often overlooked issue when it
comes to open source licenses. Both commercial and
open source developers can introduce code snippets,
functions, methods, and operational pieces of code
into their software, generally termed dependencies, as
the overarching software is dependent on that code.
Therefore, software, including open source projects,
often contain more terms and conditions than simply the
license that governs the project itself.

The popular node.js platform is a great example.
Versions up to 0.64.0 node.js often include a component
named react-native that leverages code published on
Stack Overflow and licensed under Creative Commons
Attribution ShareAlike3.0. This introduces the potential for
a license conflict, as the license requirements outlined in
Creative Commons Attribution ShareAlike 3.0 become an
inextricable part of the react-native component. The issue
is explored in more detail in an article by Synopsys CyRC
researchers Gary Armstrong and Rich Kosinski.7

As noted in the introduction of this report, acquirers in
M&A deals have become more sensitive to potential risks
stemming from software they’re acquiring—specifically
risk around licensing, security, and the quality of the open
source used within the software. Our 2021 audit numbers
indicate that potential sellers have also become more
sensitive to potential license conflicts in their software
that might undermine a deal, driving them to take a
proactive stance toward mitigating possible license issues
before the M&A is underway.

17%
Creative Commons

Attribution ShareAlike 3.0

13%
GNU Lesser General Public

License v2.1 or later

13%
Creative Commons

Attribution ShareAlike 4.0

11%
GNU General Public
License v2.0 or later

8%
GNU General Public
License v3.0 or later

7%
Creative Commons

Attribution 3.0

7%
Apache License 2.0

6%
GNU Lesser General Public

License v3.0 or later

4%
Mozilla Public License 2.0

4%
 Eclipse Public License 1.0

CONTAINED Open
Source With

No License or a
Custom License

of audited
Codebases
contained

License
Conflicts

172022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

By industry, the Computer Hardware and Semiconductors
sector had open source license conflicts in a shocking
93% of its codebases. Slightly better was the IoT sector,
which had license conflicts in 83% of its codebases. The
Healthcare, Health Tech, and Life Sciences industry had
the lowest percentage of license conflicts, with only 41%.

As discussed earlier in this report, the majority of audited
codebases contained open source, were often largely
composed of open source, and contained a large number
of open source vulnerabilities.

Understanding license risk
In the U.S. and many other places, creative work (including
software) is protected by exclusive copyright by default.
No one can legally use, copy, distribute, or modify software
without explicit permission from the creator/author in the
form of a license that grants the right to do so. Even the
most permissive open source licenses include obligations
the user takes on in return for use of that software.

Potential license risk arises when a codebase includes open
source with licenses that appear to conflict with the overall
license of the codebase. For example, the GNU General
Public License (GPL) often governs the use of open source
used in commercial software. But commercial software
vendors may overlook the requirements of the GPL license
and create a conflict with that license.

Customized open source licenses might place undesirable
requirements on the licensee and will often require legal
evaluation for possible IP issues or other implications. For
example, the JSON license is based on the permissive MIT
license, but the JSON license adds the distinction that “The
software shall be used for good, not evil.”8 The ambiguity of
this statement leaves its meaning up to interpretation, posing
a particular concern in M&A scenarios where acquirers are
hesitant to inherit this type of indistinct legal risk.

Codebases that contain open source components with
no discernible license or a customized license have an
additional layer of risk. Twenty percent of the audited
codebases contained open source with no license or a
custom license.

LICENSING

Percentage of Codebases With Licensing Conflicts, by Industry

2021:

93% Computer Hardware and Semiconductors

83% Internet of Things

67% Internet and Software Infrastructure

65% Cybersecurity

63% Telecommunications and Wireless

62% Virtual Reality, Gaming, Entertainment, Media

61% Aerospace, Aviation, Automotive, Transportation,
Logistics

58% Manufacturing, Industrials, Robotics

56% Energy and Clean Tech

56% Big Data, AI, BI, Machine Learning

53% Internet and Mobile Apps

51% Financial Services and FinTech

50% Ed Tech

47% Marketing Tech

47% Enterprise Software/SaaS

45% Retail and eCommerce

41% Healthcare, Health Tech, Life Sciences

2018

4
0

%
60

%
80

%

2019 2020 2021

182022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

OPEN SOURCE
MAINTENANCE

2022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc. 19

OPEN SOURCE MAINTENANCE

Maintenance by Open
Source Developers
Of the more than 2,000 codebases examined by Black
Duck Audit Services that included risk assessments, 88%
contained open source that had no development activity
in the last two years—no feature upgrades, no code
improvements, and no security issues fixed over the past
24 months. This could mean that the project participants
were satisfied with their work and saw no need for new
features or improvement. More likely it means that the
project is no longer maintained.

The recent Census II study,9 produced by the Linux
Foundation and the Laboratory for Innovation Science at
Harvard, found that almost all the most widely used open
source is developed and maintained by only a handful
of contributors. When examining the top 50 non-npm
projects, the study found that 23% had only one developer
accounting for more than 80% of the lines of code, a
perfect example of the so-called “80-20” rule.10

Ninety-four percent of the projects had fewer than 10
developers accounting for more than 90% of the lines of
code. As the Census II study concluded, “these findings
are counter to the typically held belief that thousands or
millions of developers are responsible for developing and
maintaining [free and open source software].”

Open source projects popular enough to become an
industry standard, like Kubernetes, have a large number of
volunteer developers working on the code. Some of these
developers are even employed by companies that depend
on Kubernetes, giving those organizations a vested
interest in supporting and encouraging their employees’

containED
components

that had no new
development in the

past two years

contained components
that were a year

or more behind on
maintainer updates

contained open
source more

than four years
out-of-date

contained
components

with outdated
versions

work on Kubernetes. This translates to resiliency for the
Kubernetes ecosystem. The departure of even key team
members on popular projects like this is something that
can usually be handled with minimal disruption to the
overall project.

The same can’t be said for smaller projects. GitHub has
millions of projects in which the number of developers is
in the single digits. The departure of a single developer
often means losing the only person who understands
exactly how and why the code was written. Incidentally,
these smaller projects are often one of an application’s
most common dependencies, as they often perform basic
tasks like keeping log data—as is the case with Log4j.

Is Your Organization
Supporting Open Source?
If your organization’s software relies on the security and
stability of an open source project, it should be a standard
practice for your organization to support that project,
either through developer contribution, monetary aid, or
by other means. More organizations are heeding this call
each year.

The 2020 FOSS Contributor Report, sponsored by the
Linux Foundation,11 found that nearly half of respondents
to its survey are paid by their organizations to contribute
to open source projects. A CyRC survey report12 found
that the majority (65%) of organizations in the business
of building software have policies in place allowing their
developers to contribute to open source projects. It’s
a trend that the open source community can hope will
continue.

202022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

OPEN SOURCE MAINTENANCE

Maintenance by Open
Source Consumers
Of the more than 2,000 codebases examined by Black
Duck Audit Services that included risk assessments,
88% contained outdated versions of open source
components. That is, an update or patch was available
but had not been applied.

There are justifiable reasons for not keeping software up-
to-date. A DevSecOps team might determine that the risk
of unintended consequences outweighs whatever benefit
would come from applying the newer version. Embedded
software may be at minimal risk from vulnerabilities that
can only be introduced from an external source.

Or it could be a time/resources issue. With many teams
already stretched to the limit building and testing new
code, updates to existing software can become a lower
priority, aside from the most critical issues.

But it’s highly possible that a large percentage of that 88%
is due to the DevSecOps team being unaware that a newer
version of the open source component is available—if
they are aware of the component at all. As noted in earlier
editions of the OSSRA report, open source is different from
commercial software—not worse, not better, but different—
and thus requires different techniques to manage.

For example, procurement and patches are handled
differently for commercial and open source software.
The purchase of commercial software usually requires

the involvement of a procurement department, as
well as review standards that are part of a vendor risk
management program. Open source may simply have
been downloaded and used at the developer’s discretion.
There may be some organizational guardrails for its use—
only code with permissive licenses allowed, for instance—
but in many cases, not even this guidance exists.

Unless developers keep an accurate and up-to-date
inventory of the open source they introduce into their
code, that knowledge may be lost when they move on to
other projects or leave the organization altogether. The
open source component becomes forgotten and ignored.
Until, of course, the component breaks or becomes
vulnerable to a high-risk exploit, and then the scramble
to update is on. Which is precisely what occurred with
Log4Shell.

Similarly, all organizations that use commercial software
are familiar with patches and updates being pushed to
their software. That’s seldom the case with open source,
where the user is expected to be aware of a component’s
security and stability status and apply new versions as
they become available.

If your organization uses software—and what organization
today doesn’t?—that software almost certainly includes
numerous open source components. The data makes it
clear: You need an accurate, comprehensive inventory of
the open source in your software, as well as processes
and policies in place to monitor vulnerabilities, upgrades,
and the overall health of the open source you use.

Twenty-three percent of open
source projects have only one

developer contributing the bulk
of code. Ninety-four percent of
the projects have fewer than 10

developers accounting for more
than 90% of the lines of code.

“These findings are counter
to the typically held

belief that thousands or
millions of developers are

responsible for developing
and maintaining [free and

open source software].”
— Linux Foundation, Census II

212022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

INTRODUCTION

CONCLUSION

222022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

A Prescription for the
“Witches’ Brew” of Open
Source
Although the decrease in high-risk vulnerabilities found
in our audits was encouraging, 2021 was still a year of
open source vulnerabilities and exploits—as is nearly every
year in these modern times. The newest addition to the
high-profile vulnerability pack, the Log4Shell vulnerability,
caused the biggest stir of 2021.

Based on download volume, Log4j is one of the
most popular open source components in use and
a dependency in more than 7,000 other open source
projects. The Log4Shell vulnerability is considered
dangerous enough to earn it the highest score possible
on the CVSS severity scale issued by the NVD—a 10
out of 10. In a flurry of reports, we closed out 2021 with
continued warnings of attempts to scan and attack
systems vulnerable to Log4Shell.

Are We Vulnerable?
Are Our Customers
Vulnerable? Will We Be
Held Accountable?
According to the Federal Trade Commission (FTC), the
original Log4j vulnerability is being widely exploited
in the wild and poses a “a severe risk to millions of
consumer products” including enterprise software and
web applications. In fact, the FTC finds the vulnerability
dangerous enough that it has issued a statement that it
“intends to use its full legal authority to pursue companies
that fail to take reasonable steps to protect consumer
data from exposure as a result of Log4j, or similar known
vulnerabilities in the future.”13

Largely thanks to the heroic efforts of DevSecOps teams
at countless organizations, many of whom worked
tirelessly through the holidays, Log4Shell’s threat to their
organization appears to have been essentially mitigated.
But somewhat lost in the uproar was the fact that the
need for this round-the-clock remediation effort was

CONCLUSION

often a result of organizations not knowing where Log4j
was located within their systems and applications, or
in fact, if it was there at all. The identification problem
was multiplied across thousands of IT groups, which all
scrambled to answer questions like “Are we vulnerable to
Log4Shell? Is our vendors’ software vulnerable? Are the
customers using our software vulnerable?”

A key tenet of the OSSRA report is to highlight the risks
that can stem from unmanaged open source use. As we’ve
said before, it’s important to distinguish between a lack of
open source management and the fact that open source
itself is not the problem.

In earlier times, the open source community had to endure
disparaging comments from the commercial software
world, usually with the implication that open source was
dangerous to use. Remarks ranged from open source
being called “snake oil” (Ken Olsen, one-time CEO of Digital
Equipment Corporation, 1987) to “a cancer that attaches
itself in an intellectual property sense to everything it
touches” (Steve Ballmer, one-time CEO of Microsoft
Corporation, 2001).

The CEOs’ criticism was neither accurate nor enduring.
In fact, open source now serves as the foundation of

commercial software, with 97% of commercial code
containing open source, as noted in this year’s OSSRA
report.

Yet as universal as it’s become, the misperception that
open source is somehow inherently dangerous persists.
As recently as last year, Anne Neuberger, the U.S. Deputy
National Security Advisor for Cybersecurity, characterized
open source as a “witches’ brew” while discussing the
Log4Shell vulnerability.14

Open Source: A Charm of
Powerful Trouble
Tracing the etymology back to its sixteenth-century
origins, the term “Witches’ brew” has carried various
interpretations, all of which center around a meaning
of “a mixture of unknown and potentially dangerous
ingredients,” which is the point Ms. Neuberger seemed to
want to make about open source.

A core principle to any security program is the need to
know what’s in the code (the “brew”) you build or use.
Without this information, you’re left in the dark. Effective
management of open source begins with the identification
of open source.

A Software Bill of Materials
The concept of a software Bill of Materials (SBOM) derives
from manufacturing, where the classic Bill of Materials is
an inventory detailing all the items included in a product.
When a defective part is discovered, the manufacturer
knows which of its products is affected and can begin the
process of repair or replacement. Similarly, maintaining an
accurate, up-to-date SBOM that inventories open source
components is necessary to ensure that code remains
high-quality, compliant, and secure. As in manufacturing,
an SBOM of open source components allows you
to pinpoint at-risk components quickly and prioritize
remediation appropriately. A comprehensive SBOM lists
all open source components in an applications as well as
those components’ licenses, versions, and patch status.

In the world of 2022, where 97% of commercial code
contains open source, visibility into the open source
components used in an application needs to be considered
a mandatory and minimum requirement for any effective
DevSecOps or AppSec effort. Without this information,
business risk increases. The issue is preventable with a
comprehensive view of the open source powering your
business.

Eye of newt and toe of frog,
Wool of bat and tongue of dog,

Adder’s fork and blind-worm’s sting,
Lizard’s leg and owlet’s wing,

For a charm of powerful trouble.
(Wm. Shakespeare Macbeth, Act IV)

232022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2022 Synopsys, Inc.

Additional reading
NTIA Multistakeholder Process on Software Component Transparency

Executive Order on Improving the Nation’s Cybersecurity

Census II of Free and Open Source Software—Application Libraries

Log4Shell: A Case for Trusting Open Source—With Guardrails

References
1. Ian Forsyth, Global M&A momentum to keep going like a train, the Press and Journal, 2/25/2022.

2. Eran Orzel, 2021 Software Supply Chain Security Report, Argon Security, 2021.

3. CVEdetails.com, Docker security vulnerabilities, 2021.

4. Dominick Reuter, A developer sabotaged their own open-source libraries, breaking thousands of apps, in apparent protest of mega-corporations, Business Insider, 1/10/2022.

5. Jen Psaki, Readout of White House Meeting on Software Security, whitehouse.gov, 1/13/2022.

6. National Vulnerability Database, CVE-2020-11023 Detail, 2/7/2022.

7. Gary Armstrong and Rich Kosinski, The license and security risks of using Node.js, synopsys.com, 8/13/2019.

8. The JSON License, json.org, 2002.

9. The Linux Foundation and the Laboratory for Innovation Science at Harvard, Census II of Free and Open Source Software—Application Libraries, linuxfoundation.org, 1/2022.

10. Vincent Tabora, The Pareto Principle In Software Engineering —Applying the 80/20 Rule, medium.com/0xcode, 8/30/2021.

11. The Linux Foundation and the Laboratory for Innovation Science at Harvard, Report on the 2020 FOSS Contributor Survey, linuxfoundation.org, 12/10/2020.

12. Synopsys Cybersecurity Research Center, DevSecOps Practices and Open Source Management in 2020, synopsys.com, 2020.

13. Federal Trade Commission, FTC warns companies to remediate Log4j security vulnerability, ftc.gov, 1/4/2022.

14. Jack Gillum and Jennifer Jacobs, Some Federal Systems Affected by Software Flaw, Official Says, Bloomberg, 12/16/2021.

CONCLUSION

The Synopsys difference
Synopsys Software Integrity Group provides integrated solutions that transform the way development teams build and
deliver software, accelerating innovation while addressing business risk. Our industry-leading portfolio of software
security products and services is the most comprehensive in the world and interoperates with third-party and open
source tools, allowing organizations to leverage existing investments to build the security program that’s best for them.
Only Synopsys offers everything you need to build trust in your software.

About the CyRC
The Synopsys Cybersecurity Research Center (CyRC) works to accelerate access to information around the identification,
severity, exploitation, mitigation, and defense against software vulnerabilities. Operating within the greater Synopsys
mission of making the software that powers our lives safer and of the highest quality, the CyRC helps increase awareness
of issues by publishing research supporting strong cybersecurity practices.

For more information, go to www.synopsys.com/software .

Synopsys, Inc.
690 E Middlefield Road
Mountain View, CA 94043 USA

U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_apr2021.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://linuxfoundation.org/wp-content/uploads/LFResearch_Harvard_Census_II.pdf
https://dzone.com/articles/log4shell-a-case-for-trusting-open-source-with-gua
https://www.pressandjournal.co.uk/fp/business/uk-and-abroad/3960072/experts-say-business-climate-for-global-ma-activity-remains-strong/
https://info.aquasec.com/argon-supply-chain-attacks-study
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/Docker-Docker.html
https://www.businessinsider.com/developer-sabotages-open-source-github-code-libraries-protest-corporations-2022-1
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security/
https://nvd.nist.gov/vuln/detail/CVE-2020-11023
https://www.synopsys.com/blogs/software-security/node-js-license-security-risks/
https://www.json.org/license.html#:~:text=The%20Software%20shall%20be%20used,A%20PARTICULAR%20PURPOSE%20AND%20NONINFRINGEMENT
https://linuxfoundation.org/wp-content/uploads/LFResearch_Harvard_Census_II.pdf
https://medium.com/0xcode/the-pareto-principle-in-software-engineering-applying-the-80-20-rule-ef87af760643
https://www.linuxfoundation.org/wp-content/uploads/2020FOSSContributorSurveyReport_121020.pdf
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html?intcmp=sig-blog-ossras
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.bloomberg.com/news/articles/2021-12-16/some-federal-systems-affected-by-software-flaw-official-says
http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=

©2022 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. April 2022

http://www.synopsys.com/copyright.html

	Introduction
	ABOUT THE 2022 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT AND THE CYRC

	Overview
	2022 in review
	Terminology
	Industries in the OSSRA

	Vulnerabilities and Security
	Open source vulnerabilities and security
	2021: The Year of
Open Source
	Vulnerabilities in Industries
	The Executive Order and Supply Chain Security
	The top 10 vulnerabilities

	Licensing
	Open source licensing
	Understanding license risk

	Open Source Maintenance
	Maintenance by Open Source Developers
	Is Your Organization Supporting Open Source?
	Maintenance by Open Source Consumers

	Conclusion
	A Prescription for the “Witches’ Brew” of Open Source
	Are We Vulnerable? Are Our Customers Vulnerable? Will We Be Held Accountable?
	Open Source: A Charm of Powerful Trouble
	A Software Bill of Materials

